Traffic Based Sequential Learning During Botnet Attacks to Identify Compromised IoT Devices

نویسندگان

چکیده

A novel online Compromised Device Identification System (CDIS) is presented to identify IoT devices and/or IP addresses that are compromised by a Botnet attack, within set of sources and destinations transmit packets. The method uses specific metrics selected for this purpose which easily extracted from network traffic, trains itself during normal operation with an Auto-Associative Dense Random Neural Network (AADRNN) using traffic measured as arrives. As it operates, the AADRNN trained auto-associative learning only estimates being benign, without prior collection different attack data. experimental evaluation on publicly available Mirai data shows CDIS achieves high performance Balanced Accuracy 97%, despite its low on-line training execution time. Experimental comparisons show sequential (online) learning, provides best among six state-of-the-art machine models. Thus can provide crucial effective information prevent spread attacks in networks having multiple addresses.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Machine Learning Techniques to Identify Botnet Traffic

To date, techniques to counter cyber-attacks have predominantly been reactive; they focus on monitoring network traffic, detecting anomalies and cyber-attack traffic patterns, and, a posteriori, combating the cyber-attacks and mitigating their effects. Contrary to such approaches, we advocate proactively detecting and identifying botnets prior to their being used as part of a cyber-attack [12]....

متن کامل

AntibIoTic: Protecting IoT Devices Against DDoS Attacks

The 2016 is remembered as the year that showed to the world how dangerous Distributed Denial of Service attacks can be. Gauge of the disruptiveness of DDoS attacks is the number of bots involved: the bigger the botnet, the more powerful the attack. This character, along with the increasing availability of connected and insecure IoT devices, makes DDoS and IoT the perfect pair for the malware in...

متن کامل

Traffic congestion control using Smartphone sensors based on IoT Technology

Traffic congestion in road networks is one of the main issues to be addressed, also vehicle traffic congestion and monitoring has become one of the critical issues in road transport. With the help of Intelligent Transportation System (ITS), current information of traffic can be used by control room to improve the traffic efficiency. The suggested system utilize technologies for real-time collect...

متن کامل

Learning-Based Computation Offloading for IoT Devices with Energy Harvesting

Internet of Things (IoT) devices can apply mobileedge computing (MEC) and energy harvesting (EH) to provide the satisfactory quality of experiences for computation intensive applications and prolong the battery lifetime. In this article, we investigate the computation offloading for IoT devices with energy harvesting in wireless networks with multiple MEC devices such as base stations and acces...

متن کامل

DGA-Based Botnet Detection Using DNS Traffic

In recent years, an increasing number of botnets use Domain Generation Algorithms (DGAs) to bypass botnet detection systems. DGAs, also referred as “domain fluxing”, has been used since 2004 for botnet controllers, and now become an emerging trend for malware. It can dynamically and frequently generate a large number of random domain names which are used to prevent security systems from detecti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2022

ISSN: ['2169-3536']

DOI: https://doi.org/10.1109/access.2022.3226700